
1512 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 51, NO. 5, MAY 2003

Millimeter-Wave Active Imaging Using Neural
Networks for Signal Processing
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Abstract—A neural network has been successfully implemented
in an active-mode millimeter-wave (60 GHz) imaging system
with a Yagi–Uda antenna array in order to recognize objects
and reconstruct images that appear distorted under coherent
millimeter-wave illumination. With 10 10 sampling points and
five teaching trials, a recognition rate of 98% has been obtained
for ten dissimilar alphabetical letters used as objects. The success
rate of reconstruction of distorted millimeter-wave images was
80% when five dissimilar letters were used for the reconstruction.
The recognition rate after changing the spatial resolution of the
optical system and sampling interval of the image is also discussed.

Index Terms—Active-mode millimeter-wave imaging, image
reconstruction, imaging array, neural network, object recognition.

I. INTRODUCTION

M ILLIMETER-WAVE imaging can be used to obtain in-
formation through clouds, smoke, dust, and other ob-

structions that render visible and infrared (IR) systems ineffec-
tive. It also has applications in plasma diagnostics, atmospheric
and planetary remote sensing, automotive collision-avoidance
radar, etc. [1]–[3].

Millimeter-wave imaging can be either active or passive
mode. Active-mode millimeter-wave imaging has a higher
signal-to-noise ratio than passive-mode imaging, but the
active-mode images are distorted by speckle and/or glint under
coherent illumination [4]. Moreover, millimeter-wave imaging
cannot offer spatial resolution better than visible or IR imaging
for a given optical aperture size. In some cases, these distorted
images cannot be recognized and, therefore, it is necessary to
improve the recognition rate. Various active-mode microwave
and millimeter-wave imaging techniques and their image-re-
construction algorithms for target identification have been
documented by several authors [2], [5]–[7]. However, there
is no report of a neural network [8] being used in signal pro-
cessing for target identification in a camera-mode active-mode
millimeter-wave imaging system using an imaging array [9],
which would make real-time operation possible. Signal-pro-
cessing technology using a neural network has applications in
pattern recognition [10], speech recognition, control of robots,
tomographic microwave imaging [5], and ultrasonic imaging
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Fig. 1. Millimeter-wave active imaging system.

[11]. In image processing, the recognition rate can be rapidly
raised [10], [11].

This paper describes a 60-GHz active imaging radar, which
uses a Yagi–Uda antenna array that we developed. The imaging
radar incorporates multilayered feedforward neural-network
signal processing to recognize objects and reconstruct images
distorted under coherent illumination. It is shown that a good
associative memory can be constructed using a Hopfield neural
network; nevertheless, we have adopted the multilayered
feedforward neural network because of the following reasons.
The Hopfield neural network has an upper limit of the number
of patterns that can be recalled [12]. The limit of the number
of stored patterns depends on the number of neurons used
in the network. Increasing the number of neurons leads to
increasing the learning time for the network. Moreover, the
real-time operation to recall the stored pattern is impossible
because some extent of operating time is necessary to relieve
the network energy. Considering some practical applications,
the real-time performance is quite important. From the above
reasons, we preferred the multilayered feedforward network for
our research means. The previous signal processing [13] using
the neural network in our imaging system was limited to object
recognition. To reconstruct images, we implemented the neural
network for image reconstruction. Moreover, we examined
the recognition rate by changing the spatial resolution of the
optical system and the sampling interval of the image.

II. MILLIMETER-WAVE ACTIVE IMAGING SYSTEM

The experimental arrangement used for the millimeter-wave
imaging system is shown in Fig. 1. A horn antenna was used to
illuminate an object with a linearly polarized coherent 60-GHz
signal, with the signal amplitude modulated to allow phase-sen-
sitive detection. Millimeter waves scattered by the object were
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Fig. 2. Spatial resolution of the optical system and the sampling interval of
the image for the example of the letter A. (a) The experiment with the effective
F -number of 1.68. (b) The experiment with the effective F -number of 0.84.
Black dots represent sensors. T corresponds to the interval between sensors,
which is determined by the sampling theorem for obtaining a diffraction-limited
image. �x corresponds to the spatial resolution of the optical system on the
image plane.

focused by two dielectric lenses to construct an image. The op-
tical system consisted of an objective lens (TPX, ) and
a hemispherical substrate lens [14], [15]. A ten-sensor one-di-
mensional imaging array [9], [16] was positioned in the focal
plane, on the backside of the substrate lens, and two-dimen-
sional images of 10 10 pixels were composed by mechani-
cally scanning the array in the other dimension. The imaging
array consisted of ten two-element Yagi–Uda antennas, each
with beam-lead Schottky-diode detectors (SANYO SBL-804).
The radiator elements were half-wave resonant dipoles on a thin
plate of PTFE/glass with , which is almost the same
dielectric constant as that of TPX, and the diodes were inte-
grated as detection elements at the feed point of each radiator.
The director elements were on the other side of the plate. The
antenna element dimensions were optimized for matching the
impedance to the diodes and beam pattern to the optical system.
The interval between sensors was , where .
Here, is the vacuum wavelength and is the refractive index
of the TPX substrate lens.

III. MILLIMETER-WAVE IMAGES

Alphabetical letters made of aluminum foil were used as test
objects for evaluating the imaging system. The size of the ge-
ometrical image on the image plane is as much as eight times
the interval between sensors in the vertical direction. The mil-
limeter-wave images were experimentally obtained under the
following two sets of conditions to study the spatial resolution
of the optical system and sampling intervals for images:

a) the effective -number is 1.68, and the sampling interval
is determined by the sampling theorem for obtaining

a diffraction-limited image;
b) the effective -number is 0.84, and the sampling interval

is twice the interval determined by the sampling theorem
(Fig. 2).

The effective -number can be written as [15], [17]

(1)

where is half the angle subtended by the exit pupil when the
distance between the object and the optical system is finite.

Fig. 3. Millimeter-wave images for the letters A and J.

The spatial resolution on the image plane was calculated using
Rayleigh’s criterion for resolution [18] as follows:

(2)

where is the spatial resolution of the intensity image in
case of coherent illumination, where it is assumed that two ob-
ject points are illuminated by the same phase. The magnification
of the optical system was 0.26 in Case a) and 0.094 in Case b).
Therefore, the electrical size of the target in the vertical direction
was in Case a) and in Case b). The reason why
the electrical size was different is that we changed the optical
system while using the same imaging array under both condi-
tions. In Case b), the spatial resolution on the image plane is
twice as good as that for Case a). The gap at the bottom of the
letter A will, for example, not be resolved by the optical system
in Case a), although it will be resolved in Case b). Examples of
experimentally obtained images for the letters A and J in Case
b) are shown in Fig. 3. The images represent the power distribu-
tion of the scattered signals and are strongly distorted, mainly
because of speckle and/or glint resulting from the coherent illu-
mination.

IV. OBJECT RECOGNITION

To recognize these images, we used a back-propagation
model neural network [19], [20] as a signal processor. The
network configuration for object recognition, which consisted
of 10 10 input units, 60 hidden units, and 26 output units,
is shown in Fig. 4. It was implement using a workstation
(110-MHz Sparc Station 5), and the number of learning was
set to 10 000. The recognition rate was studied as a function of
the number of “teaching-data” required, when ten dissimilar
letters (A, H, J, L, O, P, S, T, V, and Z) were used as the objects.
In this experiment, nine sets of image data were collected for
each letter by randomly changing the incident angle from the
optical axis of the millimeter-wave to the object from 30 to
60 . Although the choice of data to be used for teaching is
important, teaching-data was selected and taught to the network
as follows.

1) An arbitrary data set was first selected from the nine sets
of image data as teaching data and the other eight sets
were used as test data, and the recognition experiments
were conducted.

2) The set of test data with a particularly poor recognition
rate was added to teaching data and the other seven sets
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Fig. 4. Configuration of the neural network for object recognition. It consisted
of 10 � 10 input units, 60 hidden units, and 26 output units. It was implement
using a workstation (110-MHz Sparc Station 5), and the number of learning was
set to 10 000.

Fig. 5. Recognition rate as a function of teaching data in Case b) in Fig. 2. Ten
dissimilar letters were used as objects.

were used as the test data, and the recognition experi-
ments were conducted.

3) By repeating the above procedure, teaching-data sets
were increased to six.

In Case b) in Fig. 2, the resulting recognition rate in this first
case for one set of teaching data was very poor (30%) since
a varying degree of distortion had not yet been taught to the
network. By repeating the above process, the recognition rate
was improved, as shown in Fig. 5. A high recognition rate of
98% was obtained using data from five teaching trials for each
letter, which shows that neural network signal processing is very
suitable for millimeter-wave active imaging. In this case, in the
teaching mode, after learning 10 000 times, the squared error
function [11] became smaller than 0.01 for every pattern. In
Case a) in Fig. 2, however, the recognition rate remained very
poor, although this process was repeated and, in the teaching
mode, after learning 10 000 times, the squared error function
did not converge at all. This implies that the objects are well
recognized even though the sensors are roughly spaced at twice
the interval determined by the sampling theorem when the reso-
lution of the optical system is sufficiently high, but are not rec-
ognized when the sensors are spaced at the interval determined
by the sampling theorem when the resolution of optical system
is not sufficiently high.

In the teaching mode in Case b), it took less than 2 min to cal-
culate one letter. On the other hand, processing for recognition
was a real-time operation.

Fig. 6. Configuration of the neural network for object image reconstruction.
It consisted of 5 � 5 input units, 30 hidden units, and 10 � 10 output units.
This network was implement using a workstation (110-MHz Sparc Station 5).
The number of units of the input layer was reduced to 25, which was computed
by averaging values for the neighboring four pixels (2 � 2 pixels) of the
millimeter-wave image to avoid having a neural network that is too large.

V. IMAGE RECONSTRUCTION

The neural network for image reconstruction reconstructs the
object’s shape. The network configuration for image reconstruc-
tion, which consisted of 5 5 input units, 30 hidden units, and
10 10 output units, is shown in Fig. 6. This network was
also implement using a workstation (110-MHz Sparc Station 5).
Generally, the number of units of the input layer should also be
10 10 , but to avoid having a neural network that is too
large, we reduced the number of units of this layer as follows.
The average values for the neighboring four pixels (2 2 pixels)
of the millimeter-wave image were computed. As the total pixel
number of millimeter-wave images is 100, the number of av-
eraged values is 25. These averaged values were used as input
data to the neural network. Therefore, the number of units of the
input layer could be reduced to 25.

In this experiment, image data were only collected in Case
b) because of the results of the object recognition. Five letters
(A–E) were used as objects, and nine sets of image data were
collected for each letter by the same method, as described in
Section IV. From the nine sets, three arbitrary sets were used
as the teaching data and the rest were used as the test data.
As we used two-dimensional objects in the experiment, the
teaching data for the output pattern had to be binary values.
These teaching data consist of 10 10 pixels and were made
according to their object’s shape.

Fig. 7 shows examples of successful reconstruction and in-
correct reconstruction for the letter B and shows samples of dis-
torted millimeter-wave images and their reconstructed images.
For clarity, the images shown in this figure have been composed
of 60 60 pixels by inserting five pixels between two original
neighboring pixels and interpolating linearly. Table I shows a
confusion matrix obtained from the experimental results for five
letters. An average reconstruction rate of 80% was obtained. The
resulting reconstruction rate for the letters B and C were poor
(50%) since they were easily confused with E when five letters
(A–E) were used. This implies that even reconstruction rates for
the same letter change when different combinations of letters are
used as the teaching data.

In the teaching mode, it took less than 1 min to calculate one
letter, and after learning 10 000 times, the squared error function
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Fig. 7. Reconstructions of millimeter-wave images of the letter “B.”
(a) Successful example. (b) Unsuccessful example, which yields a different
letter “E.”

TABLE I
RECONSTRUCTION RATE FOR FIVE LETTERS. THE NUMBER

OF TEACHING-DATA SETS WAS THREE AND THE NUMBER

OF TEST-DATA SETS WAS SIX IN ALL CASES

became smaller than 0.01 for every pattern. On the other hand,
processing for recognition was a real-time operation.

VI. CONCLUSION

We successfully implemented a neural network in an ac-
tive-mode millimeter-wave (60 GHz) imaging system with
a Yagi–Uda antenna array in order to recognize objects and
reconstruct images that appear distorted under coherent mil-
limeter-wave illumination. Two sets of experimental results
were obtained by changing the spatial resolution of the optical
system and the sampling intervals for images. The objects were
recognized accurately even though the sensors were spaced at
roughly twice the interval determined by the sampling theorem
when the resolution of the optical system was sufficiently high,
but not recognized when the sensors were spaced at the interval
determined by the sampling theorem when the resolution
of the optical system was not sufficiently high. When the
sensors were spaced at twice the interval determined by the
sampling theorem and the resolution of the optical system was
sufficiently high, a recognition rate of 98% was obtained for ten
dissimilar letters used as objects with five teaching trials. The
success rate for reconstruction of distorted millimeter-wave
images of five different letters was 80%. This implies that the
millimeter-wave images, which appear to be heavily distorted,
in fact have certain features that follow certain laws, and that
neural network signal processing can be used to recognize or

reconstruct these active-mode millimeter-wave images. This
method of signal processing may be applied to recognition and
reconstruction of millimeter-wave images that are distorted,
provided the resolution of the optical system is good enough.

Planned future work includes changing the number of
teaching data and increasing the number of alphabetical letters
in experiments on image reconstruction.
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